B.Sc. Mathematics, Part-I PAPER-I (Honours)

(Set Theory, Matrices, Abstract Algebra, Theory of Equations and Trigonometry)

**Annual Examination, 2021*

Time: 3 Hours.

Full Marks: 80

Answer **Five** questions in all, selecting at least one question from each group.

All questions carry equal marks.

GROUP 'A'

- 1. (a) Prove that an infinite union of denumerable sets is denumerable.
 - (b) Define a Lattice, Complete Lattice and set an example of Lattice which is not a complete Lattice.
- 2. (a) If $f: X \to Y$ and $A \subseteq Y$, $B \subseteq Y$ then show that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
 - (b) Define an equivalence relation and equivalence classes of sets giving one example of each.
- 3. State and prove fundamental theorem of equivalence relation.
- 4. What do you mean by a partial order relation and total order relation and well ordered set. Give one example of each.
- 5. If A, B, C, D are any three non-empty sets then prove that
 - (a) $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D) \cup (A \times D) \cup (B \times C)$
 - (b) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$

GROUP 'B

- 6. (a) Prove that if a group G has four elements then it must be abelian.
 - (b) Prove that the order of every element of a finite group is a divisor of the order of the group.
- 7. (a) Define a group and show that the four fourth roots namely 1, -1, i, -i form a group with respect to multiplication.
 - (b) Prove that $G = \{0, 1, 2, 3, 4, 5\}$ is a finite abelian group of order 6 with respect to addition modulo 6.
- 8. (a) Prove that a group G is abelian if $b^{-1}a^{-1}ba = e \ \forall \ a, b \in G$ and e is the identify element of G.
 - (b) If H_1 , H_2 are subgroups of a group G then show that $H_1 \cap H_2$ is also a subgroup of G.

GROUP 'C'

- 9. (a) If A and B are any two non-singular matrices of the same order then prove that $(AB)^{-1} = B^{-1}A^{-1}$.
 - (b) Find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 7 & 9 \end{bmatrix}$.
- 10. Find the eigen values and eigen vectors of the matrix : $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.
- 11. (a) State and prove De-Moiver's theorem.
 - (b) Find the condition so that the equation $x^4 px^3 qx^2 + rx + s = 0$ may have its roots in arithmetical progression.
- 12. (a) If $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Then find the value of $A^2 4A + 3I$.
 - (b) Solve the following system of linear equations by matrix method.

. . .

B.Sc. Mathematics, Part-I PAPER-II (Honours)

(Differential Calculus, Integral Calculus and Analytical Geometry of Three Dimensions) Annual Examination, 2021

Time: 3 Hours.

Full Marks: 80

Answer Five questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- State and prove Taylor's theorem. 1.
 - (b) Find the Lagrange's form of remainder after n terms in the expansion of e^{ax} cos bx
- (a) If $y = e^{aSin^{-1}x}$ then prove that, $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2+a^2)y_n = 0$.
 - (b) If $y = (x^2 1)^n$ then prove that, $(x^2 1)y_{n+2} + 2xy_{n+1} n(n+1)y_n = 0$.
- (a) Prove that the radius of curvature for the pedal curve p = f(r) is given by 3. $\rho = r \frac{dr}{dn}.$
 - (b) Find the asymptotes to the curve $(x^2 + y^2)(x + 2y + 2) = x + 9y + 2$.
- Evaluate: (a) $\underset{x\to 0}{\text{Limit}} \frac{xe^x \log(1+x)}{x^2}$ (b) $\underset{x\to 0}{\text{Limit}} \left(\frac{\sin x}{x}\right)^{\overline{x^2}}$.
- (a) If $u = \log(x^2 + y^2 + z^2 3xyz)$ then show that : $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{3}{(x^2 + y^2 + z^2)^2}$. 5.
 - (b) If the normal at any point to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ makes an angle ϕ with xaxis then show that its equation is $y \cos \phi - x \sin \phi = a \cos 2\phi$

GROUP 'B'

6. Evaluate any **Two** of the following:

(a)
$$\int \frac{dx}{\sqrt{(x-\alpha)(x-\beta)}}$$
 (b) $\int \frac{x^2}{x^4+1} dx$

(b)
$$\int \frac{x^2}{x^4 + 1} dx$$

(c)
$$\int \cos ec^3 x \ dx$$

7. Evaluate any *Two* of the following:—

(a)
$$\int_0^{\pi/2} \frac{\sin^s x}{\sin x + \cos x} dx$$

(b)
$$\int_0^{\pi/2} \log(\sin x) dx$$

(a)
$$\int_0^{\frac{\pi}{2}} \frac{\sin^5 x}{\sin x + \cos x} dx$$
 (b)
$$\int_0^{\frac{\pi}{2}} \log(\sin x) dx$$
 (c)
$$\int_0^{\frac{\pi}{4}} \log(1 + \tan \theta) d\theta$$

- (a) Evaluate $\underset{n\to\infty}{Limit} \left(\sum_{n=1}^{n-1} \frac{1}{n} \sqrt{\frac{n+r}{n-r}} \right)$
 - (b) Obtain the reduction formula for $\int Cos^m x \sin nx \, dx$.
- Find the area of the loop $y^2 = x(x-1)^2$.
- 10. Find the volume of the solid formed by the revolution of the ellipse $\frac{\chi^2}{R^2} + \frac{y^2}{R^2} = 1$ about x-axis.

GROUP 'C'

- 11. (a) If the tangent to the sphere $x^2 + y^2 + z^2 = r^2$ makes intercepts on the coordinate axis a, b, c, respectively then show that $\frac{1}{a^2} + \frac{1}{h^2} + \frac{1}{c^2} = \frac{1}{r^2}$.
 - (b) Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 5$, x + 2y + 3z= 3 and touch the plane 4x + 3y - 15 = 0.
- 12. (a) Find the polar equation of the conic in the form $\frac{\ell}{r} = 1 + e \cos\theta$.
 - (b) Find the polar equation of the tangent at any point of it to the conic $\frac{\ell}{r} = 1 + e \cos\theta$.

B.Sc. Mathematics, Part-I, PAPER-I (Subsidiary)

Annual Examination, 2021

Time: 3 Hours.

Full Marks : 80

Answer **Eight** questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- 1. Let $f: X \to Y$, $A \subseteq Y$, $B \subseteq Y$ then show that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 2. If A, B, C are any three non-empty sets then prove that

(a)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(b)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

3. What do you mean by an Equivalence relation. Give two examples of it.

GROUP 'B'

- 4. What do you mean by an abelian group ? If a group G has four elements then prove that it must be abelian group.
- 5. For a finite group G, prove that the order of every element of G is finite and less than or equal to the order of the group G.
- 6. Let $G = \{1, w, w^2\}$ where w is an imaginary cube root of unity then prove that G is a group with respect to multiplication as operation.
- 7. Let f be a homomorphism of a group G onto a group G' with Kernel, $K = \{x \in G : f(x) = e'\}$ where e' is the identity element of G', then show that K is a normal sub group of G.
- 8. Let f be a homomorphism of a group G into a group G' then prove that.
 - (i) f(e) = e' where e is the identity of G and e' is the identify element of G'.
 - (ii) $f(a^{-1}) = \{f(a)\}^{-1} \forall a \in G.$
 - (iii) If the order of $a \in G$ is finite then the order of f(a) is the divisor of the order of a.

GROUP 'C'

- 9. State and prove De-Moivre's theorem.
- 10. Decompose $\log(\alpha + i\beta)$ into real and imaginary parts.
- 11. If tan(x + iy) = u + iv then prove that $u^2 + v^2 + 2u \cot 2x = 1$.

GROUP 'D'

- 12. Test the convergence of the series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots \infty$.
- 13. Test the convergence of the series whose nth term is $(\sqrt{n^2+1}-\sqrt{n^2-1})$.
- 14. (a) State and prove Cauchy general principle of convergence of a real sequence.
 - (b) Show that the sequence (a_n) where $a_n = \sqrt{n^2 + 4n} n$ is convergent.

GROUP 'E'

- 15. Deduce the polar equation of the conic in the form $\frac{\ell}{r} = 1 + e \cos \theta$.
- 16. (a) State and prove Euler's theorem on Homogeneous functions of two variables.
 - (b) If $f(x, y) = x \cos y + y \cos x$ then prove that : $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.
- 17. Prove that : $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$.
- 18. Prove that : $[\vec{a} \times \vec{b} \quad \vec{b} \times \vec{c} \quad \vec{c} \times \vec{a}] = 2[\vec{a} \quad \vec{b} \quad \vec{c}]^2$

B.Sc. Mathematics, Part-II

PAPER—III (Honours) Annual Examination, 2021

Time: 3 Hours.

Answer **Five** questions in all, selecting at least one question from each group.

All questions carry equal marks.

Full Marks: 80

GROUP 'A'

- 1. (a) Define a closed set. Prove that the intersection of any number of closed sets is closed.
 - (b) Prove that between two distinct real numbers there lie infinity of irrationals and rationals.
- 2. (a) State and prove theorem of least upper bound.
 - (b) State and prove fundamental theorem of classical analysis.
- 3. (a) Show that any non-empty open set is a union of open intervals.
 - (b) State and prove theorem of greatest lower bound.

GROUP 'B'

- 4. (a) State and prove Raabe's test.
 - (b) Test for the convergence of the series $\sum \frac{(n+1)(n+2)}{(n+3)(n+4)}$.
- 5. (a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{1+n^2}$, $\forall x > 0$.
 - (b) Test the convergence of the series whose n^{th} term is $\sqrt{n^2+1}-\sqrt{n^2-1}$.
- 6. (a) Test the convergence of the series $\frac{1}{1^{\rho}} + \frac{1}{2^{\rho}} + \frac{1}{3^{\rho}} + \frac{1}{4^{\rho}} + \dots \infty$.
 - (b) State and prove Cauchy's n^{th} root test for convergence of an infinite series.
- 7. (a) Define a convergent sequence and show that it is bounded.
 - (b) Show that a bounded monotonic increasing sequence tends to its least upper bound.
- 8. (a) Show that the sequence (a_n) defined by $a_1 = \sqrt{7}$, $a_{n+1} = \sqrt{7 + a_n}$ converges to a positive roof of the equation $x^2 x 7 = 0$.
 - (b) Let $x_1 = 1$, $x_2 = \sqrt{2 + x_1}$, $x_3 = \sqrt{2 + x_2}$,...., $x_{n+1} = \sqrt{2 + x_n}$. Show that the sequence (x_n) is convergent and the limit of convergence is 2.

GROUP 'C'

9. (a) Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$
.

- (b) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$.
- 10. (a) Let V be a vector space and W_1 , W_2 are finite dimensional subspaces of V. Then show that $W_1 + W_2$ is finite dimensional and dim $W_1 + \dim W_2 = \dim W_1 \cap W_2 + \dim (W_1 + W_2)$.
 - (b) Prove that any two bases of a finite dimensional vector space have the same number of elements.

B.Sc. Mathematics, Part-II

PAPER—IV (Honours) Annual Examination, 2021

Time: 3 Hours.

Full Marks : 80

Answer **Five** questions in all, selecting at least one question from each group.

All questions carry equal marks.

GROUP 'A'

- 1. (a) Find the orthogonal Trajectory of the family of Cardoids $r = a(1 + \cos \theta)$.
 - (b) Prove that the system of confocal conic $\frac{\chi^2}{a^2 + \lambda} + \frac{\gamma^2}{b^2 + \lambda} = 1$ is self orthogonal.
- 2. Solve any **Two** of the following differential equations:—

(a)
$$\left(\frac{dy}{dx}\right)^2 - 5\frac{dy}{dx} + 6 = 0$$

(b)
$$(px - y)(x - py) = 2p$$

(c)
$$(x-a)p^2 + (x-y)p - y = 0$$

- 3. (a) Solve $\frac{d^2y}{dx^2} + a^2y = Sec ax$ by using variation of parameters.
 - (b) Solve $\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} + 4x^2y = x^4$ by using method of change of variables.

GROUP 'B'

4. (a) Show that
$$\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$$
.

(b) Prove that
$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$$
.

5. (a) Prove that
$$\frac{d}{dt}(\overrightarrow{u} \times \overrightarrow{v}) = \overrightarrow{u} \times \frac{d\overrightarrow{v}}{dt} + \frac{d\overrightarrow{u}}{dt} \times \overrightarrow{v}$$
.

(b) Prove that
$$\frac{d}{dt}(\overrightarrow{u} \cdot \overrightarrow{v}) = \overrightarrow{u} \cdot \frac{d\overrightarrow{v}}{dt} + \frac{d\overrightarrow{u}}{dt} \cdot \overrightarrow{v}$$
.

6. (a) Prove that
$$\nabla \times (\vec{u} \pm \vec{v}) = \nabla \times \vec{u} \pm \nabla \times \vec{v}$$
.

(b) Prove that :
$$\nabla \cdot (\overrightarrow{u} \times \overrightarrow{v}) = \overrightarrow{v} \cdot (\nabla \times \overrightarrow{u}) - \overrightarrow{u} \cdot (\nabla \times \overrightarrow{v})$$

7. State and prove the necessary and sufficient condition of the principle of virtual work.

GROUP 'C'

- 8. Derive the tangential and normal velocities and accelerations in polar co-ordinates.
- 9. State and prove the necessary and sufficient condition for equilibrium of a system of co-planar forces also find the equation of line of action of the resultant.
- 10. Define simple Harmonic motion. If in a simple harmonic motion u, v, w be the velocities at distances a, b, c from a fixed point on the straight line which is not the centre of the force. Show that the periodic time T is given by the equation:

$$4\pi^{2}(a-b) (b-c) (c-a) = T \begin{vmatrix} u^{2} & v^{2} & w^{2} \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}.$$

B.Sc. Mathematics, Part-II

PAPER-II (Subsidiary) Annual Examination, 2021

Time: 3 Hours.

Answer Eight questions in all, selecting at least one question from each group. All questions carry equal marks.

Evaluate any two of the following integrals :-

(a)
$$\int \frac{dx}{\sqrt{(x-\alpha)(\beta-x)}}$$

(b)
$$\int \frac{dx}{\sin x (3 + 2\cos x)}$$

(a)
$$\int \frac{dx}{\sqrt{(x-\alpha)(\beta-x)}}$$
 (b) $\int \frac{dx}{\sin x(3+2\cos x)}$ (c) $\int \frac{dx}{(1+x^2)\sqrt{1-x^2}}$

Full Marks: 80

2.

(a)
$$\int_{0}^{\infty} \frac{\log(1+x^2)}{1+x^2} dx$$

(b)
$$\int_{0}^{\pi/4} \log(\tan x) dx$$

(a)
$$\int_{0}^{\infty} \frac{\log(1+x^2)}{1+x^2} dx$$
 (b) $\int_{0}^{\pi/4} \log(\tan x) dx$ (c) $\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx$

Find the reduction formula for :-3.

(a)
$$\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x \, dx$$

(b)
$$\int Sin^m x \ Cos \ nx \ dx$$

4. Find the perimeter of the loop of the curve $9ay^2 = (x-2a)(x-5a)^2$.

5. (a) Evaluate
$$\int_{n\to\infty} \frac{1^2}{1^3+n^3} + \frac{2^2}{2^3+n^3} + \dots + \frac{n^2}{n^3+n^3}$$
.

(b) Evaluate
$$\int_{n\to\infty} \frac{[(n+1)(n+2)(n+3)....(n+n)]}{n}$$

- Find the area between the curve $y^2(a + x) = (a x)^2$ and its asymptote. 6.
- Find the volume of revolution of the loop of the curve $y^2(a + x) = x^2(a x)$ about the x-axis. 7.

8. Solve: - (a)
$$y = 2px + p^2$$

(b)
$$y = px - x^4 p^2$$
.

9. Solve the following differential equations :-

(a)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} + 4y = x^2$$

(a)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} + 4y = x^2$$
. (b) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2e^{2x}$

GROUP-B

- 10. (a) Define a convex set and a hyper plane and prove that a hyper plane is a convex set.
 - (b) Prove that the intersection of a finite number of convex sets is a convex set.
- 11. Find the volume of the Tetrahedron, the co-ordinates of whose vertices are (x_1, y_1, z_1) , $(x_2, y_2, z_2), (x_3, y_3, z_3)$ and (x_4, y_4, z_4) .
- 12. (a) Find the equation of the right circular cylinder whose axis is given by $\frac{x}{1} = \frac{y}{0} = \frac{z}{2}$ and radius $\sqrt{7}$.
 - (b) Find the equation of the sphere which passes through the point (·, ·, ·) and the circle $x^2 + y^2 + z^2 = a^2$, z = 0.

GROUP-C

- 13. What do you mean by Simple Harmonic Motion, derive an expression for time period.
- 14. State and prove principle of virtual work.
- (a) State and establish the principle of energy.
 - (b) Analyze the motion of a body under inverse square law.
- Deduce the general conditions for equilibrium of a system of co-planar forces. 16.

Nalanda Open University

Annual Examination - 2020

B.Sc. Mathematics (Honours), Part-III Paper-V

Time: 3.00 Hrs. Full Marks: 80

Answer any five questions, selecting at least one question from each group. All questions carry equal marks.

Group 'A'

- Prove that (R^n, d) is complete where d on R^n is defined as $d(x, y) = \left[\sum_{i=1}^n |x_i y_i|^2\right]^{\frac{1}{2}}$. 1.
- (a) Let (X, d) be a metric space and $A \subseteq X$ then show that \overline{A} is closed if and only if 2.
 - (b) If M and N are two subsets of a metric space (X, d) then show that $\overline{MUN} = \overline{M} \cup \overline{N}$.
- (a) In a metric space (x,d) prove that the union of an arbitrary collection of open sets is 3.
 - (b) In a metric space (x,d) prove that any finite intersection of open sets in X is open.
- 4. (a) State and prove Minkowsky's in equality.
 - (b) State and prove Cauchy Schwartz inequality.
- 5. (a) Define the convergence of a sequare (x_n) in a metric space (x,d) an prove that limit of sequence in (x,d) if it exists is unique.
 - (b) Define a Cauchy sequence in a metric space (x,d) and prove that every convergent sequences in (x,d) is a Causchy sequence in (x,d).

Group 'B'

- (a) Let (X,T_1) and (Y,T_2) be two Topological spaces then a function $f:X\to Y$ is $T_1\to T_2$ 6. continuous if and only if for every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$.
 - Let (X, T_1) and (Y, T_2) be two Topological spaces then a mapping $f: X \to Y$ is open if and only if $f(A^{\circ}) \subset [f(A)]^{\circ}$ for every subset A of X.
- Let (X, T) be a Topological space and A and B are any two subsets of X and \overline{A} denotes the closure of A then prove that:

(a)
$$\overline{\phi} = \phi$$

(b)
$$A \subseteq A$$

(c)
$$A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$$

(d)
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

(b)
$$A \subseteq \overline{A}$$
 (c) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$
(e) $(\overline{A \cap B}) \subseteq \overline{A} \cap \overline{B}$ (f) $\overline{A} = A$
Group 'C'

$$(f) A = A$$

(a) Prove that every bounded monotonic function $f:[a,b] \to R$ is R-integrable on [a,b]. 8.

- (b) If a function f is continuous on [a,b] then prove that it is integrable on [a,b].
- if f and g are bounded and R-integrable on [a,b] then prove that f+g is also bounded and 9. R-integrable on [a,b] and $\int_{a}^{b} \{f(x) + g(x)\} dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$
 - if f and g are two bounded and R-integrable functions in [a,b] then prove that fg is bounded and R-integrable in [a,b].

- (a) Find the radius of convergence of the series $\sum \frac{n^n x^n}{x^n}$. 10.
 - (b) Prove that the series $\sum \left(\frac{\cos n\theta}{n^2}\right)$ is convergent for all real values of θ .
- 11. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n \log n (\log \log n)^p}.$

B.Sc. Mathematics, Part-III

PAPER-VI (Honours) Annual Examination, 2021

Time: 3 Hours.

Full Marks: 80

Answer Five questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- 1. (a) Define an automorphism of a group G. Let $x \in G$, then prove that the function f defined by $f(q) = x^{-1}qx$ for $q \in G$ is an automorphism of G.
 - (b) If G is a group, then for every element $g \in G$, prove that $C_o(g)$ is a Subgroup of G.
- Prove that the set of all polynomials in Z[x] with constant term O is prime ideal in Z[x]. 2.
- 3. Show that the union of two ideals is again an ideal.
- 4. Define the principal ideal ring and show that the ring of integers is a principal ideal ring.
- 5. Define a ring homomorphism. If $f: R \to R'$ be a homomorphism of a ring R onto a ring R' then show that f is a homomorphism iff Kernel of $f = \{0\}$.
- Show that any ring can be embedded in a ring with unity. 6.

GROUP 'B'

- 7. (a) Prove that $2^{No} = c$, where symbols have their usual meaning.
 - (b) For cardinal numbers α , β , γ prove that

(i)
$$\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta + \gamma}$$

(ii)
$$(\alpha \cdot \beta)^{\gamma} = \alpha^{\gamma} \beta^{\gamma}$$

(ii)
$$(\alpha \cdot \beta)^{\gamma} = \alpha^{\gamma} \beta^{\gamma}$$
 (iii) $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \gamma}$

- (a) Introduce the concept of order types and construct the product of two order types. 8.
 - (b) If X is any non-empty set then show that card (P(x)) is 2 where P(x) is the power set of X.
- State and prove Cantor's Theorem. 9.

GROUP 'C'

- 10. State and prove Cauchy integral formula.
- Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, although Cauchy-11. Riemann differential equations are satisfied.
 - Evaluate $\int_{C} \frac{e^{2z}}{(z+1)^2} dz$. Where C is the circle |z| = 3.
- 12. Obtain the necessary and sufficient condition for differentiability of a complex valued function.

B.Sc. Mathematics, Part-III

PAPER-VII (Honours)

Annual Examination, 2021

Time: 3 Hours.

Answer **Five** questions in all, selecting at least one question from each group.

All questions carry equal marks.

Full Marks: 80

GROUP 'A'

- 1. (a) Prove that the set of all feasible solutions of a linear programming problem constitutes a convex set.
 - (b) Define convex combination of vectors in R^n . Prove that the set of convex combinations of a finite number of linearly independent vectors v_1 , v_2 , v_3 ,, v_n is a convex set.
- 2. (a) Define a convex set, the subset of Rⁿ and show that the finite intersection of convex sets is a convex set.
 - (b) Prove that every hyperplane is convex.
- 3. Use simplex method to solve:

Maximize : $z = 3x_1 + 9x_2$

Subject to $x_1 + 4x_2 \le 8$, $x_1 + 2x_2 \le 4$ and $x_1 \ge 0$, $x_2 \ge 0$.

GROUP 'B'

- 4. Solve:
 - (a) $pz qz = z^2 (x + y)^2$
 - (b) (y + z) p + (z + x)q = x + y
- 5. Solve by using Charpit's method $(p^2 + q^2)x = pz$.
- 6. Test for integrability and hence solve the equation $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 xy)dz = 0$
- 7. Use Monge's method to find the complete solution of the equation $2x^2r 5xys + 2y^2t + 2(px + qy) = 0$
- 8. (a) Solve $\frac{dx}{x^2 v^2 z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$.
 - (b) Solve $\frac{dx}{dt} + 4x + 3y = t$ and $\frac{dy}{dt} + 2x + 5y = e^t$.

GROUP 'C'

- 9. Find the attraction of a uniform sphere at an external point of it.
- 10. State and prove Laplace theorem in cartesian form.

B.Sc. Mathematics, Part-III PAPER-VIII (Honours)

Annual Examination, 2021

Full Marks: 80

Time: 3 Hours.

Answer any Five Questions. All questions carry equal marks.

- 1. Describe Newton-Gregory formula for backward interpolation.
- 2. (a) Discuss Newton-Raphson's method to obtain approximate value of root of f(x) = 0.
 - (b) By using synthetic division solve $f(x) = x^3 x^2 (1.001)x + 0.9999 = 0$ in the neighbourhood of x = 1.
- 3. (a) Derive Simpson's $\frac{3}{8}$ th rule for numerical integration.
 - (b) Use Weddle's rule to evaluate $\int_0^{10} \frac{1}{x+1} dx$.
- 4. Applying analytical method for finding roots of an equation based on Rolle's theorem and demonstrate on $3x \sqrt{1 + \sin x} = 0$.
- 5. Use Gauss-Jordan method to solve the system of equations $x_1 + 2x_2 + x_3 = 8$, $2x_1 + 3x_2 + 4x_3 = 20$ and $4x_1 + 3x_2 + 3x_3 = 16$ taking initial condition $x_1 = 0$, $x_2 = 0$, $x_3 = 0$.
- 6. (a) Describe Picard's method of successive approximation.
 - (b) Apply Runge-Kutta mehtod for the solution of first order differential equation.
- 7. (a) Explain the meaning of the operators E and Δ . Show that E and Δ are commutative with respect to variables.
 - (b) Evaluate $\Delta^3 (1-x)(1-2x)(1-3x)$ and $\Delta^n (e^{ax+b})$ where a and b are constants.
- 8. (a) State and prove Adam's predictor formula.
 - (b) Describe Milne corrector formula.
- 9. (a) Explain Gauss's method of elimination for the solution of a system of m equations in m variables.
 - (b) Solve the following system of equations

$$X_1 + \frac{1}{2}X_2 + \frac{1}{3}X_3 = 1$$

$$\frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{4}X_3 = 0$$

$$\frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{1}{5}X_3 = 0$$

- 10. (a) Derive Trapezoidal and Simpson's one third rule to numerical integration.
 - (b) Solve difference equation $\bigcup_{x+1} = 2^x \bigcup_x$.