Nalanda Open University Annual Exam - 2015

Annual Exam - 2015 Intermediate of Science (I.Sc.), Part-I

		Mathematics, Paper-I				
Tim	e: 3.00 l	<u>-</u>				
Ans	Answer any <i>Five</i> Questions. Question No.1 is compulsory. All questions carry equal marks.					
1.	1. Select the correct answer from the following question. Each part of the questions carry one mark.					
	(a)	Let the universal set is $U = R$ then $\{0\}^C$ is :				
		(i) $\{x : x = 0, x R\}$ (ii) R^+				
		(iii) R ⁻ (iv) [0,∞]				
	(b)	Let X be the set of triangle and R is relation of becoming issoscles. Then, R is:				
		(i) not equivalence relation (ii) reflexive relation only				
		(iii) sysmmetric and reflexive (iv) transitive only				
	(c)	If $x = a + b$, $y = aw + bw^2$, $z = aw^2 + bw$, then $x^3 + y^3 + z^2$ equals:				
	(1)	(i) $6ab$ (ii) $3(a^3 + b^3)$ (iii) $3(a^2 + b^2)$ (iv) $a^3 + b^3$				
	(d)	If the same number is added to each term of an A.P., then the				
		resulting sequence becomes:				
		(i) H.P				
		(ii) remains A.P				
		(iii) depends nature on the number (iv) G.P				
	(e)	The solution set of the equation $x^2 - ix + 6 = 0$, is:				
	(0)	(i) $\{3i, 2i\}$ (ii) $\{3i, 2i\}$ (iii) $\{-2i, -3i\}$ (iv) $\{2i, -3i\}$				
	(f)	The number of ways 8 Indians and 8 Pakistanis can set down a				
	()	reserved table so that no two Indians are together, is:				
		(i)				
	(g)	The sum of the series $1 + 2x + 3x^2 + 4x^3 + \dots$ to \propto :				
	(8)					
		(i) $\frac{1}{1+x}$ (ii) $\frac{1}{1-x}$ (iii) $\frac{1}{(1+x)^2}$ (iv) $\frac{1}{(1-x)^2}$				
	(h)	Cramer's rule is applied to solve:				
	()	(i) any sysyem of equations				
		(ii) second degree system of equations				
		(iii) linear system of equations				
		(iv) linear system of equations under restricted condition				
	(i)	In a triangle ABC, $\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \tan \frac{A}{2}$ equals :				
		(i) 0 (ii) 1 (iii) $\frac{1}{2}$ (iv) 2				
	(j)	For any $x \in \mathbb{R}$ the identity $tan^{-1}x + \cot^{-1}x$ equals:				
		(i) $\frac{\pi}{2}$ (ii) π (iii) 2π (iv) $\frac{\pi}{4}$				
	(12)	2				
	(k)	In any triangle ABC, $\cos \frac{A}{2}$ equals :				
		$(s-a) = (s-a)(s-b) \qquad (s-a)(s-b) = (s-a)(s-b)$				

2bc

- The condition for Colliverity of three points $A(x_1, y_1)$, $B(x_2, y_2)$ and (1) $C(x_3, y_3)$ is $|x_2 y_2 1|$ equals: $\begin{vmatrix} x_3 & y_3 & 1 \end{vmatrix}$
 - (iii) 1 (ii) 1
- The equation of a line parallel to a given line lx + my + n = 0 and (m) passing through the point (α, β) is:
 - (i) $mx ly = m\alpha l\beta$
- (ii) $mx + ly = m\alpha + l\beta$
- (i) $mx ly = m\alpha l\beta$ (iii) $\alpha(lx + my) + \eta\beta = 0$
 - (iv) $\alpha(lx + my) \beta \eta = 0$
- The points (1, 1) and (2, -1) are located with regard to the lines (n) 3x + 4y - 6 = 0 in the :
 - (i) same side

(ii) opposite sides

(iii) on the line

- (iv) none of these
- The condition that type line y = mx + c will touch the circle $x^2 + y^2$ (o) = a^2 is:
 - (i) $c^2 = a^2 (1 + m^2)$

(ii) $c^2 = 1 + m^2$

(iii) $c = \pm a$

- (iv) $c^2 (1 + m^2) = a^2$
- The vertex of the porabola $y^2 3x 2y + 7 = 0$ is the point : (p)
- (0, 0) (ii) (2, 1)
- (iii) (1, 2)
- (iv) (2, -1)
- Let A and B have 5 and 9 elements. Determine the minimum number of elements in $A \cup B$.
- Find the range and domain of the function $f(x) = \frac{x}{1+x^2}$. 3.
- Prove that every complex number has two square roots. 4.
- The A.M of two numbers exceed G.M by $\frac{3}{2}$ and G.M exceeds H.M by $\frac{6}{5}$. 5. Find the numbers.
- How many triangles can be formed by joining 12 points so that 7 are 6. Collinear.
- If $\alpha + \beta = \gamma$, then show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 + 2 \cos \alpha \cdot \cos \beta$. 7.
- 8. Sow that the locus of the points of intersection of tangents to an ellipse at two points whose eccentire angles differ by a constant, is an ellipse.

Examination Programme, 2015

I.Sc. Part - I

Date	Papers	Time	Examination Centre
10/2/2015	0/2/2015 Hindi or English Language & Literature Paper – I		Nalanda Open University, Patna
12/2/2015	Biology and Math Paper – I	8 to11 A.M	Nalanda Open University, Patna
14/2/2015	Chemistry Paper – I	8 to11 A.M	Nalanda Open University, Patna
16/2/2015	Physics Paper – I	8 to11 A.M	Nalanda Open University, Patna
18/2/2015	Hindi Composition 100 Marks or Hindi 50 Marks & Urdu 50 Marks	8 to11 A.M	Nalanda Open University, Patna
From 20/2/2015	Practical Counselling and Practical Examination of Biology, Chemistry and Physics	8 to11 A.M	Nalanda Open University, Patna

Annual Exam-2015 Intermediate of Science (I.Sc.), Part-I Botany, Paper-I

Time: 3.00 Hrs. Full Marks: 80 Answer any *Five* Questions. Question No.1 is compulsory. All questions carry equal marks.

Select	the correct answer in the following	staten	nents :		
(i)	Small pox is caused by : (a) Bacteria (b) Protozoa	(c)	Fungi	(d)	Virus
(ii)	Stipule is the part of: (a) Seed (b) Stem	(c)	Leaf	(d)	Flower
(iii)	Chloroplast is cup shaped in : (a) Spirogyra (c) Bryophytes	(b) (d)	Nostoc Chlamydom	onas	
(iv)	A cell increased in volume when p (a) Hypotonic (b) Isotonic		l in a solutior Hypertonic		ich one is? All of these
(v)	The reaction of Krebs cycle occur (a) Cytoplasm (b) Mitochondr		Nucleus	(d)	All of these
(vi)	CO ₂ acceptor in C ₃ plant is : (a) RUDP (b) PEPA	(c)	PGA	(d)	OAA
(vii)	As per template theory amino acida) DNA (b) mRNA		t combines wi sRNA	ith : (d)	tRNA
(viii)	Replication of DNA is brought about (a) Oxidase (b) Kinase		v an enzyme o Reductase		
(ix)	Genes are composed of : (a) DNA and RNA (c) RNA only	(b) (d)	DNA only Protein		
(x)	Leaf is modified to pitcher in : (a) Nepenthes (b) Utricularia	(c)	Dionaea	(d)	Drosera
(xi)	Number of stamens in Solanaceae (a) 10 (b) 5	e is : (c)	∞	(d)	6
(xii)	To which family does sunflower b (a) Solanaceae (b) Brassicacea	_		(d)	Asteraceae
(xiii)	Viruses are entirely: (a) Saprophytic (b) Parasitic	(c)	Symbiotic	(d)	Epiphytic
(xiv)	Guard cells differ from epidermal (a) Chloroplast (b) Vacuole		n having : Cell wall	(d)	Hairs
(xv)	Binomial nomenclature was intro (a) Carolus Linnaeus (c) Aristotle	duced (b) (d)	d by : Mendel Theophrastu	เร	
(xvi)	Annual ring helps in detecting on (a) Thickness of stem (c) Age of plants	e of ta (b) (d)		sten	n

- 2. Describe the floral character of the family Brassicaceae. Give the floral formula, floral diagram and botanical name of two plants of economic importance of this family.
- 3. Describe the detailed structure of a bacterial cell.
- 4. Describe the structure and function of mitochondira.
- 5. Mention Krebs cycle.
- 6. Give an account of mitotic division of cell and write its significance.
- 7. Describe the sources of water pollution and suggest the methods of its control.
- 8. Describe the process of crossing over and discuss its significance.
- 9. Mention the DNA replication.
- 10. Write short notes on any **Four** of the following:
 - (a) Annual ring
 - (b) Acid rain
 - (c) Cereals
 - (d) Mutation
 - (e) Economic importance of Cyanobacteria
 - (f) Cell cycle

Programme of I.Sc. Part-I Counselling and Exam' 2015

Venue: For Botany - 4th Floor, Bio Lab, Biscomaun Bhawan, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

(A) Practical Counselling

Date	Time			
Date	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM		
20.02.2015	Botany (All Students)	_		
21.02.2015	Physics (All Students)	Chemistry (All Students)		

()						
Date	Time					
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM				
23.02.2015	Botany (All Students)	Chemistry (All Students)				
24.02.2015	Physics (All Students)	_				

Annual Exam - 2015 Intermediate of Science (I.Sc.), Part-I Chemistry, Paper-I

Time: 3.00 Hrs. Full Marks: 80

Answer any *Five* Questions. Question No.1 is compulsory. Attempt Two Questions from Group 'A' and Two Ouestions from Group 'B'. All questions carry equal marks.

	and Two Questions from Group 1). All	questions carry equal marks.
Choo (i)	se the correct answer in the follow Elements having same mass nu called:		
	(a) Isotopes (b) Isotone	(c)	Isobar (d) None of these
(ii)	Nucleous consists of : (a) Electron (c) Proton and Neutron	(b) (d)	Electron and Proton Neutron
(iii)	Which of the following configura (a) Ar(18)3d ⁶ (b) Ar(18)3d ⁵ 4s		with atomic number 24 is : Ar(18)4s ² 4p ⁴ (d) Ar(18)3d ⁴ 4s ²
(iv)	A Lewis base : (a) accepts protons (c) accept cone pair of electrons	(b)	donates protons donates lone pair of electrons
(v)	The specific rate of reaction depertual concentration of reactant (c) time		concentration of product
(vi)	In a chemical reaction catalyst is (a) activation (c) find product		led to change the : heat of reaction equilibrium
(vii)	When a radio active substance disintegration: (a) is not affected (c) increases	is s' (b) (d)	ubjected to vacume, the rate of reduces to zero decreases
(viii)	Cinnabar is the ore of: (a) Zinc (b) Mercury	(c)	Copper (d) Silver
	Group -	· A	
What	is moont by hybridization? We		lower the chance of an and and

- 2. What is meant by hybridization? Write down the shape of sp, sp², sp³ hybridization. Arrange these in order of decreasing bond angle.
- 3. What is the constitution of nucleus? Explain its stability by giving three its theories.
- 4. Define Lawis acid and Lais base. Explain your answer with suitable examples.
- 5. Define spectrum. Define spectrum of hydrogen.

- 6. Write short notes on following:
 - (a) Pauli's Exclusion Principle
 - (b) Radioactivity
 - (c) Aufbau Principle

Group - B

- 7. How is ammonia manufactured by Habar's process. How does ammonia react with heated copper and red hot platinum.
- 8. Explain the following terms with reference to the periodic table:
 - (a) Diagonal relationship
 - (b) Transition metals
 - (c) Typical element
 - (d) Representative elements
- 9. Define the terms with examples:
 - (a) Flux

(b) Slag

(c) Gague

(d) Concentration of ores

- (e) Roasting
- 10. What do you understand by water pollution? What are its main pollutants? What are effect on human health.

Programme of I.Sc. Part-I Counselling and Exam' 2015

Venue: For Botany - 4th Floor, Bio Lab, Biscomaun Bhawan, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

(A) Practical Counselling

(11) I Interieur Couristining						
Date	Time					
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM				
20.02.2015	Botany (All Students)	_				
21.02.2015	Physics (All Students)	Chemistry (All Students)				

Date	Time			
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM		
23.02.2015	Botany (All Students)	Chemistry (All Students)		
24.02.2015	Physics (All Students)	_		

Annual Exam - 2015 Intermediate of Science (I.Sc.), Part-I Physics, Paper-I

Time: 3.00 Hrs. Full Marks: 80

Answer any *Five* Questions. Question No.1 is compulsory. All questions carry equal marks.

	Select the correct answer in each of the following. ach part of the question carries 1 mark.				
(i)		ator going up with an acceleration a .			
	(a) a upward (c) $(g - a)$ downward	(b) $(g - a)$ upward (d) g downward			
(ii)	A car accelerates on a horizontal	road due to the force exerted by:			
	(a) the engine of the car(c) the earth	(b) the driver of the car (d) the road			
(iii)	À 1 kg mass is suspended at one	e end of 1 m long thread and rotated g can sustain a maximum weight of			
	1600 Newtons. Then, the max	ximum possible angular speed of			
	rotation at which the thread will a (a) 80 rad/sec (b) 40 rad/sec	(c) 160 rad/sec (d) 20 rad/sec			
(iv)		situated at a distance R from the e of mass of the body from the origin			
	(a) = R (b) $\leq R$				
(v)	64 raindrops combine to from a surface energy of all the drops to	a single drop. The ratio of the total that of the single drop is:			
(vi)	(a) 64:1 (b) 4:1	(c) 8:1 (d) 1:4 rough air at a steady velocity of 5			
(*1)	cm/sec. If the drops coalesce, the	e new terminal velocity will be:			
	(a) $5 \times 2 \text{ cm/sec}$ (c) $5 \times (4)^{1/3} \text{ cm/sec}$	(b) $5 \times \sqrt{2}$ cm/sec (d) $5/\sqrt{2}$ cm/sec			
(vii)	nV				
	(a) mass of the gas				
	(b) kinetic energy of the gas(c) number of molecules in the g	gas			
(viii)	(d) number of moles of the gas	specific heat capacities of an ideal			
(*111)	gas at constant volume and constant the following is a universal constant	stant pressure respectively. Which of			
	(a) $\frac{C_p}{C_v}$ (b) C_pC_v	(c) $C_p - C_v$ (d) $C_p + C_v$			
(ix)	Newton's law of cooling is a special				
	(a) Wein's displacement law(c) Stefan's law	(b) Kirchhoff's law (d) Planck's law			
(x)	The thermal conductivity of a rod (a) length	d depends on : (b) mass			
	(c) area of cross section	(d) material of the rod			

		(a)	$\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c)	$\frac{\pi}{2}$	(d)	π
	(xiii)		_			air. If the ten meters will ch	_	ure of the air
		` '	Wavelength	n -	ude (b) (d)	Time period		
	(xiv)	(a)	longitudina	al stationa		ntains : longitudinal transverse t		_
	(xv)	Аp	article move	es on the	x-axis accor	rding to the ϵ ic with amplit	equatio	_
	(xvi)	har	ich of the monic motic	following on :	quantities	A + B are always $\bar{a} \times \vec{r}$	zero	in a simple
2.		iss		• •	, ,			ng along the
3.		e th	a projectile			•		the time of θ with the
4.	Deriv	e th	e expressio			particle mov	ing al	ong a circle.
5.	-		he direction łooke's law?			astic constan	ts. Fin	d the energy
6.	store	d in	a stretched	wire.		working of a		
	hydro	ogen	gas thermo	meter.				
7.			asis of the n for the pro			inetic theory	of gas	ses derive an
8.	Discu	iss t	he effect of	rise of ten	iperature on	the velocity of		
9.		_			-	ic equation w ind velocity a		s differential
10.		e the	e expression		s pressure i	nside :		placement.
	(a)	liqu	id drop		★ ★ ★ (b)	soap bubble		

Two bodies A and B having equal surfaces areas are maintained at

temperatures 10°C and 20°C. The thermal radiation emitted in a

A sine wave is travelling in a medium. The minimum distance

between the two particles, always having same speed is:

(c) 1:4

(d) 1:16

given time by A and B are in the ratio:

(b) 1:2

(xi)

(xii)

(a) 1:1.15

Annual Exam - 2015 Intermediate of Science (I.Sc.), Part-II Mathematics, Paper-II

Time: 3.00 Hrs. Full Marks: 80

		Answer any <i>Five</i> Questions. Que All questions carry		npulsory.	
1.		et the correct answer from the f tions carries one mark.	following ques	tion. Each part of the	he
	(a)	The value of $\lim_{x\to 0} \frac{\log Cosx}{x}$ equals	:		
		(i) 1 (ii) -1	(iii) O	(iv) ∝	
	(b)	$\lim_{x \to a} \frac{x^n - a^n}{x - a}$ is equal to:			
		(i) <i>n</i> (ii) 1	(iii) na^{n-1}	(iv) 0	
	(c)	The value of the $\lim_{x\to 0} \frac{(1-x)^{y_n}-1}{x} \in$	equals to :		
		(i) n (ii) $-n$	(iii) 1	(iv) $\frac{1}{n}$	
	(d)	In the set A = $\{1, 2, 3, 4, 5\}$, a $x, y \in A$ and $x < y\}$. Then R is : (i) Reflexive	relation R is (ii) Symme	defined by $R = \{(x, y)\}$) :
		(iii) Transitive	(iv) none o	f these	
	(e)	If $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = (8 - 1)^n$	$(x^3)^{y_3}$, then (for	of) (x) is:	
	(f)	(i) x^{y_3} (ii) x^3 tan ⁻¹ $\sqrt{3}$ – Cot ⁻¹ (– $\sqrt{3}$) equals to :	(iii) x	(iv) $3 - x^3$	
		(i) $\frac{\pi}{2}$ (ii) $-\frac{\pi}{2}$	(iii) 2√3	(iv) 0	
	(g)	If A is a square matrix such that			
	(1.)	(i) A (ii) 1 – A			. 1
	(h)	If A is a square matrix and k is to:	a real numbe	er, then $ \kappa $ A is equ	ıaı
		(i) $k \mid A \mid$ (ii) $k^2 \mid A \mid$	(iii) k³ A	(iv) $3k A $	
	(i)	If $y = \log \{\log (\log x)\}$, then $\frac{dy}{dx} = \log (\log x)$	uals :		
		(i) $\frac{1}{\log(\log x)}$	(ii) $\frac{1}{x \log x}$	$\frac{1}{\langle \log(\log x)}$	
		(iii) $\frac{1}{x \log(\log x)}$	(iv) none o	f these	
	(j)	The differential Coefficient of sec	$(\tan^{-1} x)$ with	respect to x , is:	
		(i) $\frac{x}{\sqrt{1+x^2}}$ (ii) $\frac{1}{\sqrt{1+x^2}}$	(iii) $x\sqrt{1+x^2}$	(iv) $\frac{1}{x}\sqrt{1+x^2}$	

The rate of change of the area of a circle with respect to radius r at

(iii) 10π cm

(ii) 11π cm

(k)

r = 6 cm, is:

(i) $12\pi \text{ cm}$

(iv) 8π cm

- The value of $\int \frac{dx}{\sqrt{2x-x^2}}$, is: (1)
 - $Sin^{-1}(x-1) + C$

(ii) $Sin^{-1}(x+1) + C$

(iii) $Sin^{-1} (1 - x) + C$

- (iv) $-\sqrt{2x-x^2} + C$
- If $\int e^x \{f(x)\} + f'(x)\} dx = e^x \sin x$, then f(x) equals to : (m)

 - (i) $\sin x$ (ii) $-\sin x$
- (iii) $\cos x \sin x$ (iv) $\cos x + \sin x$
- The integral $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ equals: (n)

- (i) $e^{\sqrt{x}}$ (ii) $\frac{\sqrt{x}}{2}e^{\sqrt{x}}$ (iii) $2e^{\sqrt{x}}$ (iv) $\sqrt{x}e^{\sqrt{x}}$ The value of $\int_{1}^{3} \frac{Cos(\log x)}{x} dx$ is equal to : (0)

 - (i) Sin (log 3) (ii) Cos (log 3) (iii) Sin (log 3) (iv) Cos (log 3)
- The value of the definite integral $\int_{0}^{1} x(1-x)^{99} dx$ equals to : (p)

 - (i) $\frac{1}{10010}$ (ii) $\frac{1}{10100}$ (iii) $\frac{1}{1010}$ (iv) $\frac{1}{100}$

- Deribe the general equation of a plane. 2.
- 3. Evaluate the following integrals:
 - - $\int \frac{x^2 + 1}{(x+1)^2} dx \qquad \text{(ii)} \quad \int \frac{dx}{\sqrt{(x-a)(b-x)}} \text{ where } a < b.$
- Find the value of the integral $\int_{0}^{\infty} \frac{\cos x \, dx}{1 + \cos x + \sin x}$.
- Find the area of the region bounded between the curves $x^2 = 4y$ and 5. $y^2 = 4x$.
- Solve the differential equation $x(1 + y^2) dx y(1 + x^2) dy = 0$ given that 6. u = 0, when x = 1.
- Two cards are drawn successively with replacement from a well suffled 7. pack of cards. Find the probability distribution of number of Jacks.
- Prove that the argument of the quotient of two complex numbers is equal 8. to the difference of their arguments.

Examination Programme, 2015 I.Sc. Part - II

Date	Papers	Time	Examination Centre
10/2/2015	Hindi or English Language &	8 to 11 A.M	Nalanda Open University
	Literature Paper – II		
12/2/2015	Biology or Mathematics Paper – II	8 to 11 A.M	Nalanda Open University
14/2/2015	Chemistry Paper – II	8 to 11 A.M	Nalanda Open University
16/2/2015	Physics Paper – II	8 to 11 A.M	Nalanda Open University
From	Practical Counselling and Practical	8 to 11 A.M	Nalanda Open University
18/2/2015	Examination of Biology, Chemistry		
	and Physics		

Annual Exam - 2015

Intermediate of Science (I.Sc.), Part-II Zoology, Paper-II

Time: 3.00 Hrs. Full Marks: 80

Anguar 21	ny Fizia (Dugetione (Onaction	Mo 1 ic	compuleors	τ Δ11 α	questions carry	v 201121	mark	-0
miswera		Juesilolis, v	Oueshon	110.1 15	COmpuison	/ . <i>1</i> 111 (aucsuons can	v Equai	man	vo

(d) Stroma

- Multiple choice questions. Each question carries two marks 1.
 - Gametes are formed during: (i)
 - Oogenesis (a)
 - (b) Spermatogenesis Gametogenesis Fertilization (c) (d)
 - Leydig cells are found in: (ii) (b) Vasa deferens (c) Testis

(a)

- (iii) Mammalian heart is of:
- 2 chambered (b) 4 - chambered (a) (d) Single chambered 3 - chambered (c)
- Theory of natural selection was given by: (iv)
- (a) Lamarck (b) Darwin (c) Weismann (d) Wallace
- Insulin is secreted by: (v)
- (a) Pituitary (b) Adrenal
- Thyroid (d) Islets of Langerhans (c)
- Which one is called tapworm? (vi)
- (b) Ancylostama (c) Taenia (d) Fasciola Ascaris (a)
- Glycogen is stored in: (vii)
- Liver and Pancreas (b) Pancreas (a)
- (c) Liver (d) Muscles
- (viii) Longest duration of mitosis is:
- (b) Prophase (c) Metaphase (d) Anaphase (a) Telophase
- 2. Write short notes on any two of the following:-
 - (a) Gastrulation (b) HIV
 - (c) Blood group (d) DNA finger printing
- Describe structure and classification of protein. 3.
- Write an essay on variation.
- Describe structure and function of pituitary gland. 5.
- Give an account of respiratory system of Cockroach. 6.
- Describe the digestive system of Earthworm. 7.
- Describe mitotic cell division in an animal cell.
- What is tissue? Classify the different animal tissues. 9.
- 10. Describe the three-germinal layers of frog in the course of its development.

Programme of I.Sc. Part-II Counselling and Exam' 2015

Venue: For Zoology - 4th Floor, Bio Lab, Biscomaun Bhawan, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

(A) Practical Counselling

Date	Time			
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM		
18.02.2015	Zoology (All Students)	Chemistry (All Students)		
19.02.2015	Physics (All Students)	1		

Date	Time		
Date	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM	
19.02.2015	_	Zoology (All Students)	
20.02.2015	Physics (All Students)	Chemistry (All Students)	

Annual Exam - 2015 Intermediate of Science (I.Sc.), Part-II Chemistry, Paper-II

Time: 3.00 Hrs. Full Marks: 80

Answer any *Five* Questions. Question No.1 is compulsory. Attempt Two Questions from Group 'A' and Two Questions from Group 'B'. All questions carry equal marks.

	and Two Questions from Group 'B'. All questions carry equal marks.			
Choo (a)	The volume of a given mass at proportional to its pressure is state) (a) Boyle's law (c) Avogadro's law	t con	nstant temperature is inversely	
(b)	The apparatus used for electrolys (a) Voltmeter (c) Coulometer	sis is (b) (d)	Electrochemical	
(c)	The hybridization of carbon in ca (a) sp (b) sp ²		ryl group is : sp³ (d) dps²	
(d)	How many isomeric ether are $C_4H_{10}O$: (a) 3 (b) 4	e pro	•	
(e)	Adsorption is a: (a) bulk phenomenon (c) osomosis	(b) (d)	dissusion surface phenomenon	
(f)	When sodium ethanoate is he product is: (a) methane (b) ethane (c) mixture of methane and ethat (d) none of these		with sodium lime. The main	
(g)	The amount of Electricity which solution is: (a) 1 Faraday (b) 1 Amper		orates 108 gm of silver nitrate Coloumb (d) None of these	
(h)	CH ₃ OCH ₃ and C ₂ H ₅ OH both hav in chemical properties. Such isor (a) Position isomerism (c) Chain isomerism		sm is known by :	
	Group - A			

- 2. Define and explain Dalton's law of partial pressure of a gas. Establish the relation between partial pressure of gas and total pressure in a mixture.
- 3. State and explain Hess's law of constant heat summation. What are its application?

- 4. State and explain first law of thermodynamics. Give its mathematical form.
- 5. Stat and explain the law of mass action and deduce expression for equilibrium constant for reaction :

$$nA + mB \Leftrightarrow xC + yD$$

Establish the relationship between Kp and Kc.

- 6. Write notes on the following:-
 - (a) Buffer solution (b) pH of a solution
 - (c) Kinetic theory of gases

Group - B

- 7. How is formic acid prepared in the laboratory. How does it differ from acetic acid.
- 8. Distinguish between the following:-
 - (a) Aromatic and aliphatic compound
 - (b) Primary and Secondary alcohol
- 9. How is 1st member of alkene prepared? Give the reaction with:
 - (a) Ozone
 - (b) Hypobromous acid
 - (c) Alkeline KMNO₄ solution
- 10. Write short notes on any *Two* of the following:-
 - (a) Aldol condensation
 - (b) Huckel rule
 - (c) Polyster

Programme of I.Sc. Part-II Counselling and Exam' 2015

Venue: For Zoology - 4th Floor, Bio Lab, Biscomaun Bhawan, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

(A) Practical Counselling

Date	Time			
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM		
18.02.2015	Zoology (All Students)	Chemistry (All Students)		
19.02.2015	Physics (All Students)	_		

Date	Time		
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM	
19.02.2015	_	Zoology (All Students)	
20.02.2015	Physics (All Students)	Chemistry (All Students)	

Annual Exam - 2015

Intermediate of Science (I.Sc.), Part-II Physics, Paper-II

	Physics, Paper-II					
Time	e: 3.00 I					
		er any <i>Five</i> Questions. Question No.1 is compulsory. All questions carry equal marks.				
	The state of the s					
1.		et the correct option in each of the following. Each part of the tions carries 1 mark.				
	(i)	When light is refracted, which of the following does not change?				
	()	(a) wavelength (b) frequency (c) velocity (d) Amplitude				
	(ii)	The wavefronts of light coming from a distant source of unknown				
	` ,	shape are nearly:				
		(a) plane (b) elliptical (c) cylindrical (d) spherical				
	(iii)	The sources are called coherent if they produce waves:				
	` ,	(a) of equal wavelength				
		(b) of equal velocity				
		(c) having same shape of wavefront				
		(d) having a constant phase difference				
	(iv)	A symmetric double convex lens is cut, into two equal parts by a				
		plane containing the principal axis. If the power of the original lens				
		was 4D, the power of a divided lens will be :				
		(a) 2D (b) 3D (c) 4D (d) 5D				
	(v)	The focal length of a normal eye-lens is about :				
		(a) 1 mm (b) 2 cm (c) 25 cm (d) 1 m				
	(vi)	A man is looking at a small object placed at his near point. Without				
		altering the position of his eye or the object, he puts a simple				
		microscope of magnifying power 5x before his eyes. The angular				
		magnification achieved is:				
		(a) 5 (b) 2.5 (c) 1 (d) 0.2				
	(vii)	Light from a point source falls on a screen. If the separation between				
		the source and the screen is increased by 1%, the illuminance will				
		decrease nearly by:				
		(a) 0.5% (b) 1% (c) 2% (d) 4%				
	(viii)	A capacitor of capacitance C is charged to a potential V. The flux of				
		the electric field through a closed surface enclosing the capacitor is:				
		(a) $\frac{CV}{\epsilon_0}$ (b) $\frac{2CV}{\epsilon_0}$ (c) $\frac{CV}{2\epsilon_0}$ (d) Zero				
		ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0				
	(ix)	A uniform wire of resistance 50Ω is cut into 5 equal parts. These				
		parts are now connected in parallel. The equivalent resistance of the				
		combination is:				
		(a) 2Ω (b) 10Ω (c) 250Ω (d) 6250Ω				
	(x)	A vertical wire carries a current in upward direction. An electron				
		beam sent horizontally towards the wire will be deflected:				
		(a) towards right(b) towards left (c) upwards (d) downwards				
	(xi)	Magnetic meridian is:				
		(a) a point (b) a line along north-south				
		(c) a horizontal plane (d) a vertical plane				
	(xii)	If the current is doubled, the deflection is also doubled in:				
	. ,	(a) a tangent galvanometer (b) a moving coil galvanometer				

(d) none

(c) both

- (xiii) Two wires of the same length are shaped into square and a circle respectively and they carry the same current. Then, the ratio of their magnetic moments is:
 (a) 2:π (b) π:2 (c) 4:π (d) π:4
 (xiv) An LCR series circuit is connected to an alternating current source. At resonance the phase difference between the applied voltage and the current flowing through the circuit is:
 (a) π (b) π/2 (c) π/4 (d) zero
- (xv) The de-Broglie wave corresponding to a particle of mass m and velocity v has a wavelength associated with it:
 - (a) $\frac{h}{mv}$ (b) hmv (c) $\frac{mh}{v}$ (d) $\frac{m}{hv}$
- (xvi) In Bohr's model of hydrogen atom, the lowest orbit corresponds to:
 - (a) infinite energy

(b) maximum energy

(c) minimum energy

- (d) zero energy
- 2. On the basis of refraction at spherical surfaces, derive the lens makers' formula.
- 3. Derive Snell's law of refraction on the basis of wave theory of light.
- 4. Discuss deviation without dispersion and dispersion without deviation produced by a combination of prisms.
- 5. State and explain Gauss' law. Hence, find the electric field near an infinite plane sheet of charge having uniform surface charge density.
- 6. State and explain Faraday's law of electromagnetic induction. Obtain the value of induced e.m.f in a coil rotating in a uniform magnetic field.
- 7. Describe the construction and action of a moving coil galvanometer. Explain how it can be converter into an ammeter.
- 8. State and explain Kirchoff's laws. Discuss its application in wheatstone bridge.
- 9. What is Bohr's model of atoms? Discuss this model to explain the series spectra of Hydrogen atom.
- 10. What is a p-n junction diode? Define its dynamic resistance. Explain the function of a p-n junction diode as a rectifier.

Programme of I.Sc. Part-II Counselling and Exam' 2015

Venue: For Zoology - 4th Floor, Bio Lab, Biscomaun Bhawan, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

(A) Practical Counselling

Date	Time			
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM		
18.02.2015	Zoology (All Students)	Chemistry (All Students)		
19.02.2015	Physics (All Students)	_		

(2) 11401041 2341111401011					
Date	Time				
Dute	11.15 AM to 2.15 PM	2.30 PM to 5.30 PM			
19.02.2015	_	Zoology (All Students)			
20.02.2015	Physics (All Students)	Chemistry (All Students)			