Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-I Paper-I

Time: 3.00 Hrs.

Full Marks: 80

Answer any Five Questions, selecting at least one question from each group.

Group-A

- 1. (a) State and prove fundamental theorem on equivalence relation.
 - (b) If R is an equivalence relation on a set A, then prove that R^{-1} is also an equivalence on A.
- 2. (a) Let $f:A \to B$ and $g:B \to C$ be one-one onto mappings then show that $g \circ f:A \to C$ is also one-one onto and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
 - (b) Prove that the set of all real numbers is uncountable.

Group-B

- 3. (a) Define inverse of a matrix. Show that the necessary and sufficient condition for the existence of the inverse of a square matrix, is that it must be non-singular.
 - (b) Find the adjoint and inverse of the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

4. (a) Find the rank of a the matrix
$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

(b) Show that the equations x+2y+3z=14, 3x+y+2z = 11, 2x+3y+z=11, are consistent and then solve them.

Group-C

- 5. (a) Define an abelian group. Give two examples of an abelian group.
 - (b) Show that the set of all cube roots of unity under multiplication forms an abelian group.
- 6. (a) Show that every group of prime order is cyclic.
 - (b) Prove that the intersection of any two normal sub-groups of a group G, is a normal sub-group of G.
- 7. State and prove second isomorphism theorem on a group.
- 8. Prove that the set { $a + b\sqrt{p}$, where a and b are real numbers and p is a prime} forms a commutative ring under usual addition and multiplication. Also this forms a field with respect to the same binary operations.

Group-D

- 9. (a) Find the condition that the roots of the equation $x^3-px^2+qx-r=0$ be in H.P. Show that the mean (harmonic) root is $\frac{3r}{a}$. Hence, solve the equation $6x^3-11x^2-3x+2=0$.
 - (b) If $\alpha, \beta, \gamma, \partial$ be the roots of the be quadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, then compute $\sum \alpha^2 \beta^2$.
- 10. Solve general solution of cubic equation by cardon's method.

Group-E

- 11. (a) Prove that the nth roots of unity forms a geometric series.
 - (b) Expand $\cos \alpha$ in the ascending powers of α .
- 12. (a) If sin x = nsin(x + α), n < 1. Expand x in a series of ascending powers of n.
 (b) Find the sum of the series

$$\tan^{-1}\frac{1}{2.1^2} + \tan^{-1}\frac{1}{2.2^2} + \tan^{-1}\frac{1}{2.3^2} + \dots$$
 to n terms

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-I Paper-II

Time: 3.00 Hrs.

Full Marks: 80

Answer any *Five* Questions, selecting at least one question from each group. Group-A

- 1. (a) State and prove Leibnitz's theorem.
 - (b) Find the Lagrange's form of remainder after nth tern in the expansion of e^{ax} Cos bx as the ascending powers of x.
- 2. (a) Evaluate $\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} e}{x}$
 - (b) State and prove Euler's theorem on homogeneous function of three variables.
- 3. (a) Construct the polar formule for the radius curvature.
 (b) Find the asymptote of curve r = a tan θ.

Group-B

4. Evaluate any two of the following integrals:

(i)
$$\int \frac{dx}{x(x^2+1)^3}$$
 (ii) $\int \frac{x^2 dx}{(x+1)(x+2)^2}$ (iii) $\int \frac{e^x}{e^x - 3e^{-x} + 2}$

5. (a) Establish reduction formula for $\int \tan^n x \, dx$

(b) Show that
$$\int_{0}^{1} \frac{\log(1-x)}{x} dx = -\frac{\pi^2}{6}$$

6. (a) Find the perimeter of the loop of the curve $3ay^2 = x^2 (a - x)$.

- (b) Compute the volume of the solid obtained by revolving the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its major axis.
- 7. Determine the surface area formed by the revolution of the cycloid $x=a(\theta+\sin\theta), y=a(1-\cos\theta)$ round the tangent at the vertex.

Group-C

- 8. (a) Find the condition under which a general equation of second degree represents an ellipse.
 - (b) An ellipse of semi-axes a and b touches the x-axis at origin. Compute the locus of its centre.
- 9. (a) Construct the polar equation of a conic having length of its rectum 2*l* eccentricity e and focus is the pole of the Co–ordinate system.
 - (b) A circle passes through the focus of a conic of latus rectum 10 meters, meets it in four points whose distances from the focus are r_1 , r_2 , r_3 and r_4 . Prove that $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_2} + \frac{1}{r_4} = \frac{2}{5}$.

Group-D

- 10. (a) Find the equation of a sphere passing through four given points.
 - (b) Obtain the equation of the Enveloping cone to surface (chosen as per your convenience) and through a point (acting as the vertex of the cone).

- 11. (a) Derive the equation of the cylinder generated by lines parallel to the line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$, the guiding curve being the conic $ax^2 + by^2 = 1$, z = 0.
 - (b) Find the equation of planes passing through the intersection of planes x+y+z=2 and 2x+y-z=7 as well as touching the ellipsoid $7x^2 + 5y^2 + 3z^2 = 60$.

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Subsidiary), Part-I Paper-I

Time: 3.00 Hrs.

Full Marks: 80

Answer any *Five* Questions, selecting at least one question from each group. Group-A

- 1. (a) Define indexed family of sets. If dash (') denotes the complement of set, then show that $(\bigcup_{i \in I} E_i)' = (\bigcap_{i \in I} E_i)$
 - (b) Define a reflexive, asymmetric relations. Construct a symmetric relation which is not reflexive.
- 2. (a) What do you mean by an abelian group? Produce an example of a group which is not abelian.
 - (b) Define a cyclic group? Show that every cylic group, is necessarily abelian.
- 3. (a) State and prove De–Moivre's theorem for an index. (b) Reduce $(\alpha + i\beta)^{x+iy}$ in the A + iB form.
- 4. (a) Expand $\sin \alpha$ in the ascending powers of α .

(b) Prove that
$$\text{Log}(-1) = \left(\frac{4n+3}{2}\right)\pi i$$
, when $n \in \mathbb{Z}$.

Group-B

- 5. (a) Show that the radical axis of two circles is pendicular to the line joining their Centres. (b) Find the condition for the tangency of a line y = mx + c to the parabola $y^2 = 4ax$.
- 6. Find the conditions for the general equation of second degree representing a Conic.
- 7. (a) Prove that the infinite series, $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots \text{ to } \alpha$ is Convergent if p > 1 and divergent when $p \le 1$.
 - (b) Test the convergence of the series $1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \dots \text{ to } \alpha(x>0).$

Group-C

- 8. (a) If $y = \sin(m \sin^{-1} x)$, then show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$. (b) Find the nth derivative of $e^x \sin x \sin 2x$.
- 9. (a) State and prove Taylor's Theorem (Series). (b) If u be a homogeneous function of two variables x and y of degree n, then prove that $2 \frac{\partial^2 u}{\partial^2 u} = 2 \frac{\partial^2 u}{\partial^2 u} = 2 \frac{\partial^2 u}{\partial^2 u}$

$$x^{2}\frac{\partial u}{\partial x^{2}} + 2xy\frac{\partial u}{\partial x\partial y} + y^{2}\frac{\partial u}{\partial y^{2}} = n(n-1)u.$$

10. (a) Give geometrical meaning of scalar product of three vectors. (b) Shat that $(\vec{b} \ X \ \vec{c}) \ X (\vec{c} \ X \ \vec{a}) = [\vec{a}, \vec{b}, \vec{c}] \vec{c}$

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-II Paper-III

Time: 3.00 Hrs.

Full Marks: 80/75

Answer any Six Questions, selecting at least one question from each group.

Group-A

- 1. (a) Define sum of two Dedikind Cuts. Show that the sum of two such cuts is also a Dedikind Cut.
 - (b) Prove that any non-empty set of real numbers which bounded above has a least upper bound.
- 2. (a) State and prove Heine-Borel Theorem.
- (b) Show that the real line R is not a compact space.
- 3. (a) Show that function which is continuous on a closed and bounded interval is also uniformly continuous on that interval.
 - (b) Prove that a function f: $R \longrightarrow R$ is continuous on R iff for every open set G in R, the set $f^{-1}(G)$ is open in R.
- 4. State and prove Taylor's Theorem and state remainder in the Taylor's series. Explain different kinds of remainder.
- 5. (a) Explain improper integral and its convergence.

(b) Prove that
$$\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi} (0 < n < 1).$$

Group-B

6. (a) Define convergence of a sequence. Show that the sequence (a_n), where $a_2 = \left(1 + \frac{1}{n}\right)^n$ is convergent.

(b) State and prove Caunchy's General Principle of Convergence.

7. (a) State and prove Raabe's Test of Convergence.

(b) Examine the Convergence of the series
$$\sum_{n=1}^{\alpha} \frac{(n+1)(n+2)}{(n+3)(n+4)}$$

- 8. (a) Explain the De Morgan and Bertrand test and then prove it.
 - (b) Satisfy yourself that the series: $\frac{1^2}{2^2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} x + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} x^2 + \dots to x \text{ where}$

x > 0, is Convergent when X < 1 and divergent when $x \ge 1$.

- 9. (a) If $\sum y_n$ Converges and (x_n) is Convergent monotonic sequess, then show that $\sum x_n y_n$ is Convergent.
 - (b) Prove that the series $\sum_{n=1}^{\alpha} \frac{(-1)^{n-1}}{n}$ is conditionally Convergent. Rearrange terms of this series so that it Converges to $\frac{1}{2}$ log6.

Group-C

- 10. (a) If V is a vector space over the field F, then show that,
 - (i) a0 = 0, $a \in F$ and 0 is the zero vector V.
 - (ii) $a(-x) = -(ax), \quad a \in F \& x \in V.$
 - (iii) a(x-y) = ax ay, $a \in F$ and $x, y \in V$.
 - (b) A necessary and sufficient condition for a non-empty sub-set W of a vector space V over the field F, is that for all x, $y \in W$ and $a, b \in F \Rightarrow ax+by \in W$. Prove this statement.
- 11. (a) Define a basis of a vector space. Prove that the set $\{(1,2,1), (2,1,0), (1,-1,2)\}$ forms a basis of V₃ (R).
 - (b) Make out difference between linear transformation and linear operator. Support your answer by suitable example.

- Prove that the eigen values of a hermitian matrix are all real. Find the characteristic equation of the matrix 12. (a)
 - (b)
 - [2 1 1 2 3 1 and verify Cayley-Hamiltion Theorem. Hence, calculate the inverse 1 1 1 of A. *****

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-II Paper-IV

Time: 3.00 Hrs.

Full Marks: 80/75

Answer any Six Questions, selecting at least one question from each group.

Group-A

(a) Solve any two of the following:

 (i) p²+2ypCotx=y²
 (ii) y=2px+y²p³
 (iii) y=px+p-p²
 (b) Find the orthogonal trajactory of the family of cardoids r = a(1 + Cosθ).

2. (a) Solve
$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} + y = x^3$$
 (b) Solve $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = x \sin x$

3. Solve any two of the following:

(i)
$$x \frac{d^2 y}{dx^2} - 2(x+1)\frac{dy}{dx} + (x+2)y = (x-2)e^{2x}$$
 (ii) $\frac{d^2 y}{dx^2} - 4x\frac{dy}{dx} + (4x^2-3)y = e^{x^2}$

(iii)
$$\frac{d^2 y}{dx^2} - Cotx\frac{dy}{dx} + 4yCo\sec^2 x = 0$$

Group-B

4. (a) Prove that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$ (b) Show that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$

5. (a) If
$$\vec{r} = \vec{a} Coswt + \vec{b} sin wt$$
, then prove that (i) $\vec{r} \times \frac{d\vec{r}}{dt} = w\vec{a} \times \vec{b}$ and (ii) $\frac{d^2\vec{r}}{dt^2} = -w^2\vec{r}$.

- (b) Give the geometrical meaning of gradient of a scalar function.
- 6. (a) State and prove Green's Theorem.

(b) Show that
$$\iint (a x \hat{i} + b y \hat{j} + c z \hat{k}) \cdot \hat{n} ds = \frac{4}{3} \pi (a + b + c)$$
, where, $s \equiv x^2 + y^2 + z^2 - 1 = 0$

Group-C

- 7. (a) A uniform beam of length 2a rests in equilibrium against a smooth vertical wall and with a point of its length resting against a smooth horizontal rod which perpendicular to the wall and at a distance b from it, show that the inclination of the beam with the vertical is $\sin^{-1}(b/a)^{\frac{1}{3}}$.
 - (b) Derive the general conditions of equilibrium of a Coplanar system of forces.
- 8. (a) State and prove principle of virtual work.
 - (b) Four uniform rods are freely jointed at their extremities and form a parallelogram ABCD which is suspended by the point A and is kept in shape by a string AC. Prove that the tension of the string is equal to half the whole weight.
- 9. (a) Describe the condition of stability for a body with one degree of freedom.
 - (b) A force P acts along the axis of x and another force np along a generator of the cylinder $x^2+y^2=a^2$. Show that the central axis lies on the cylinder $n^2(nx-z)^2+(1+n^2)^2y^2=n^4a^2$.

Group-D

- 10. (a) Define S.H.M. Write its equation of motion and describe it fully.
 - (b) A particle whose mass is m is acted upon by a force $m\mu\left(x+\frac{a^4}{x^3}\right)$ towards the origin. Find

the time consumed in reaching the origin.

- 11. (a) Deduce the formula for tangential and normal accleration of a particle in a plane.
 - (b) The velocity of a particle along and perpendicular to the radius from a fixed origin are λr and $\mu\theta$ respectively. Find the path and accelerations along and perpendicular to the radius vector.

- 12. (a) A particle moves along the curve $y = a \log \sec \frac{x}{a}$ in such a way that the tangent to the curve rotates uniformly, prove that the resultant acceleration of the particle varies as the square of the radius of curvature.
 - (b) Describe the motion of a particle under central forces.

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Subsidiary), Part-II Paper-II

Time: 3.00 Hrs.

Full Marks: 80/75

Answer any *eight* Questions, selecting at least one question from each group.

Group-A

1. (a) Evaluate any two of the following:

(i)
$$\int \frac{dx}{\sin x (3 + 2Cosx)}$$
 (ii)
$$\int \frac{dx}{\sqrt{x} + \sqrt{1 + x}}$$
 (iii)
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{a + b \cos x}$$
 (a > b > 0).

 $\pi/$

2. (a) Evaluate $\int_{0}^{1} Cosx dx$ as the limit of sum.

(b) Integrate
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx$$

3. (a) Obtain the reduction formula for $\int \tan^n x \, dx$

(b) Find
$$\lim_{n \to \alpha} \sum_{r=1}^{n} \frac{r^3}{r^4 + n^4}$$

4. (a) Calculate the length of the arc of the curve $y = \log x$ intercepted between the ordinates x = 1 and x = 2.

- (b) Determine the area of the loop of the curve $x^3 + y^3 3axy = 0$.
- 5. Solve any two of the following:

(a) $y = x (p + p^2)$ (b) $y^2 \log y = xyp + p^2$ (c) Sin y Cos px - Cos y Sin px - p = 0.

6. Find the orthogonal trajactories of the family $y^2 = 4ax$

- 7. Find the general solution of the following equations: (a) $(D^2-2D+1) y = x^2 e^{3x}$ (b) $(D^2+a^2) y = \cos ax$. **Group-B**
- 8. (a) Find the equation of the sphere whose centre is (α, β, γ) and radius r.
 - (b) Form the equation of the cone whose vertex is (0,0,3) and guiding curve $x^2 y^2 = 4$, Z = 0.

9. Formulate the equation of the right circular cylinder whose axis is $\frac{x}{1} = \frac{y}{0} = \frac{Z}{2}$ and radius $\sqrt{7}$.

Group-C

- 10. (a) Define a convex set and prove that the sphere is a convex set.
 - (b) Solve the following problem graphically: Maximize $Z=5x_1+3x_2$, subject to $3x_1+5x_2 \le 15$, $5x_1+2x_2 \le 10$ and $x_1, x_2 \ge 0$.

11. Use simplex method to solve the following L.P.P Max $Z = 7x_1 + 5x_2$, Subject to : $x_1 + 2x_2 \le 6$, $4x_1 + 3x_2 \le 12$ and $x_1 \ge 0$, $x_2 \ge 0$.

Group-D

- 12. (a) Show that in a Simple Harmonic Motion $f^2T^2 + 4\pi^2v^2$ is constant, where f is acceleration, T the periodic time and v the velocity at a current point.
 - (b) A particle whose mass is m, is acted upon by a force $m\mu\left(x+\frac{a^4}{x^3}\right)$ towards the origin,

where μ and a are constants and x is the distance of the particle from the origin. Find the time taken by the particle to arrive at the origin.

13. A short of mass m penetrates a thickness t of a fixed plate of mass m. Prove that, if M is free to move, the thickness penetrated is $\frac{Mt}{M}$.

and is
$$\overline{M+m}$$
.

14. Obtain the radial and transverse accelerations of a particle moving on a plane curve.

- 15. (a) Find the equation of the line of action of the resultant force of a system of Co-planar forces acting on a rigid body.
 - (b) If the algebraic sum of moments of a system of coplanar forces acting on a rigid body vanishes about each of three non-collinear points. Prove that the system is in equilibrium.
- 16. State and prove the Principle of virtual work.

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-III Paper-V

Time: 3.00 Hrs.

3.

7.

Full Marks: 80/75

Answer any Six Questions, selecting at least one question from each group.

Group-A

1. (a) Let X be a metric space, then show that for each pair of distinct points of X, there exist neghbourhoods N₁ and N₂ such that $N_1 \cap N_2 = \phi$.

(b) Let (X, d) be a metric space and p be defined on X x X as $\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, then

show that ρ is a metric on X.

- 2. (a) Let (X, d) be a metric space and $A \subseteq X$ with $p \in X$. Then p is an accumulation point of A iff each neghbourhood of p contains a point of A other than p. Prove this statement.
 - (b) Define a derived set of a non-empty set A. Let (X,d) be a metric space and $A \subseteq X$, then prove that A' (derived set of A) is closed.
 - (a) In a metric space, show that the limit of a convergent sequence, is unique.
 - (b) If x and y are two points in the metric space (X, d) and if (x_n) and (y_n) are convergent sequences in X having limit of convergence x and y respectively, then show that $d(x_n, y_n)$ converges to d(x, y).
- 4. State and prove Cantor's intersection theorem.
- 5. (a) Let (X, d₁) and (Y, d₂) be two metric spaces and f is a mapping from X to Y. Then f is continuous iff inverse image of every open sub-set E of Y is an open sub-set of X.

Group-B

- 6. (a) If f be a bounded functions in [a, b] and P, P₁ are partitions of [a, b] such that P is finer then P₁. Then show that $L(P_1) \le L(P) \le U(P_1)$.
 - (b) Prove that every monotonic functions on [a, b], is R- integrable on [a, b]
 - (a) State and prove Bonnet's form of Mean Value Theorem.
 - (b) Prove that if f is continuous on [a, b], then there exists a number λ lying between a and

b such that $\int_{a}^{b} f(x) dx = (b-a) f(\lambda)$.

Group-C

8. (a) State and establish Cauchy's integral test.

(b) Apply Cauchy's integral test to test the convergence of the series
$$\sum_{n=2}^{\alpha} \frac{1}{n(\log n)^p}$$
.

- 9. (a) Introduce Infinite product and its convergence.
 - (b) Examine the nature of infinite product Πa_n , where $a_n = \frac{n(n+2)}{(n+1)^2}$.

Group-D

- 10. (a) Let N be a normal linear space. Show that N is a Banach space iff $\{x: ||x||=1\}$ is complete.
 - (b) Consider l^p as set of Convergent sequences of real numbers. Show that (l^p, d) is a

Banach space, where d is defined by d (x, y) =
$$\left(\sum_{i=1}^{\alpha} |x_i - y_i|^p\right)^{\frac{1}{p}} = ||x - y||$$

and
$$\sum_{i=1}^{\alpha} |x_i|^p < \alpha$$
, $\sum_{i=1}^{\alpha} |y_i|^p < \alpha$

11. (a) Let N and N¹ be two normed linear spaces. Show that the set of all continuous linear transformations of N to N¹, is a normed linear space with respect to the pointwise linear operations and norm is defined by $||T|| = \inf \{\kappa: k \ge 0\}$ and $||T(x)|| \le k ||x||$ for all $x \in N$.

12. (a) Let the inner product on C [-1, 1] be defined as $(f, g) = \int_{-1}^{1} f(t)g(t)dt$ for all $f, g \in C[-1,1]$. Show that C[-1, 1] is an inner product

space which is not a Hilbert space.

(b) Show that an inner product space X is an uniformly Convex.

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-III Paper-VI

Time: 3.00 Hrs.

Full Marks: 80/75

Answer any Six Questions, selecting at least one question from each group.

Group - A

- 1. (a) Define centre of a group. Show that the centre Z of a group G, is a normal sub-group of G.
 - (b) Let f be a function on the group G defined by $f(x) = x^{-1}$ for each x in G. Show that f is an automorphism iff G is abelian.
- 2. (a) Let $f: R \to T$ be an isomorphism of a ring R to a ring T. If 0 and 0 are zero elements of R and T respectively, then show that f(0) = 0 and f(-x) = -f(x) for all x in R.
 - (b) Show by an example that if I and J are ideals in R, then I U J is not an ideal in R.
- 3. Let I be an ideal in a ring R. Show that the quotient ring R/I is a ring. Further if R is commutative, then so is R/I.
- 4. Prove that every integral domain can be embedded in to a field.

Group - B

- 5. For any Cardinals α, β, γ show that (i) $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$ (ii) $(\alpha\beta)^{\gamma} = \alpha^{\gamma}\beta^{\gamma}$
- 6. (a) If E is any set, then show that card P(E) = 2 Card E, where P(E) denotes the power set of E.
 - (b) Find out the order type of the set $Q \cap (a, b)$ taken with usual order.
- 7. (a) State and prove Zorn's lemma.

negative integers.

(b) Prove that $n + \alpha = \alpha$, where α is an infinite Cardinal number and n is a natural number.

Group - C

- 8. (a) Derive the formula for the Mean and Variance of a Binomial distribution.
 (b) Find the number of solutions of the equation x + y + Z = 15, where x, y, z being non-
- 9. (a) Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2a_{n-2}$.
 - (b) Illustrate how generating function can be used to get the number of r-Combinations from a set with n elements when repetition of elements is allowed.

Group-D

- 10. (a) Show that $f(Z) = \sqrt{xy}$ is not analytic at the origin although cauchy Riemann differential equations are satisfied at the point.
 - (b) Construct the analytic function f(Z) = u + iv, where $u = x^3 3xy^2 + 3x + 1$.
- 11. State and prove Laurrent's theorem.
- 12. (a) Explain singularities and its types with suitable examples.
 - (b) Find the kind of singularities of the function $f(z) = \frac{Cot\pi z}{(z-a)^2}$ at z = a and $z = \alpha$.

* * * * * * *

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-III Paper-VII

Time: 3.00 Hrs.

Full Marks: 80/75

Answer any *Six* Questions, selecting at least one question from each group.

Group - A

- 1. (a) Define convex combination of vectors in R^n . Show that the set of all Convex Combinations of a finite number of linearly independent vectors v_1 , v_2 ,, v_n , is a convex set.
 - (b) A tailor has 95 square meters cotton material and 145 square meters of wool material. A suit requires 1 square meter of cotton and 3 square meters of wool and dress requires 2 square meters of each. How many of each garment should the tailor produces so as to maximize his income if a suit sells for Rs 350 and a dress for Rs 145?
- 2. (a) Introduce degenerate and non-degenerate basic solution. Obtain all basic solution of the system.

 $x_1 + 2x_2 + x_3 = 4$, $2x_1 + x_2 + 5x_3 = 5$, by specifying the nature of degeneracy/non-degeneracy.

(b) Use simplex method to solve the L.P.P.

$$Max \neq = 3x_1 + 2x_2$$

Subject to the constraints $x_1 + x_2 \le 4$, $x_1 - x_2 \le 2$ and $x_1 \ge 0$, $x_2 \ge 0$.

3. From the initial basic feasible solution of the transportation problem by using Vogel approximation method.

	W_1	W_2	W_3	W_4	Capacity
F_1	19	30	50	10	7
F ₂	70	30	40	60	9
F ₃	40	8	70	20	18
Requirement	: 5	8	7	14	

Group - B

4. Test for integrability and hence solve the equation $(y^2 + yz)dx + (z^2 + xz)dy + (y^2 - xy)dz = 0.$

5. (a) Interprate the equation Pdx + Qdy + Rdz = 0.(b) Solve the simultaneous equation

$$\frac{dx}{dt} + 2x - 3y = t, \quad \frac{dy}{dx} - 3x + 2y = e^{2t}$$

- 6. (a) Apply Charpit's method to find the complete integral of px + qy = pq. (b) Solve : $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 0.$
- 7. (a) Solve $\frac{dx}{mz ny} = \frac{dy}{nx lz} = \frac{dz}{ly mx}$.

(b) Use Monge's method to solve the equation. r - t $cos^2x + p tanx = 0$

P.T.O

Group - C

- 8. (a) Find the attraction of circular rod at its centre.
 - (b) Prove that the attraction of a solid hemisphere at the centre of its plane base is $\frac{3}{2}X\frac{M}{a^2}$, where M is the mass and a is the radius.
- 9. Define equipotential surface and lines of force. Derive the condition for a family of surfaces given by $\phi(x, y, z) = c$ be a possible family of equipotential surfaces in free surface.

Group-D

- 10.(a) Derive the expression for pressure at a point in a heavy homogeneous fluid at rest under gravity.
 - (b) A square ABCD is immersed in water with the side AB in the surface. Draw a straight line through A which shall divide the lamina into two parts, the thrust on which are equal.
- 11. (a) By integration method, find the centre of pressure of a lamina.
 - (b) Prove that the depth below the surface of a liquid of the centre of pressure of a rectangle, two of whose parallel sides are horizontal and at dept a and b, is $2(a^2+ab+b^2)$

$$3(a+b)$$

12.(a) A frustrum of a right circular cone cut off by a plane bisecting the aims perpendicularly, floats with its smaller end in water and its axis just half immersed. Prove that the specific gravity of the cone is $\frac{19}{56}$.

(b) Define equipressure and equidensity surfaces. Derive the equations of curves of equal pressure and density.

. * * * * * * * *

MOST IMPORTNAT NOTICE

ः अत्यन्त महत्वपूर्ण सूचना ः

बी०एस०सी०(प्रतिष्ठ)पार्ट-III एवं मनोविज्ञान(प्रतिष्ठा)पार्ट- III के सभी विद्यार्थियों को सूचित करना है कि उनके सामान्य एवं पर्यावरणीय अध्ययन **(G.S)** की परीक्षा 2012 जो पूर्व से दिनांक-23.02.2012 को द्वितीय पाली समय 12 से 3 बजे, अपराह्न में निर्धारित थी, अब यह परीक्षा दिनांक 24.02.2012 को द्वितीय पाली समय 12 से 3 बजे, अपराह्न में संचालित होगी । तदनरूप परीक्षा में उपस्थित होवें।

Nalanda Open University Annual Examination - 2012 B.Sc. Mathematics (Honours), Part-III Paper-VIII

Time: 3.00 Hrs.

Answer any five questions. All questions carry equal marks. Calculator is allowed.

Group - A

- 1. (a) Evaluate $\frac{\Delta}{E}\sin(x+h) + \frac{\Delta^2\sin(x+h)}{E\sin(x+h)}$
 - (b) By means of divided differences formula, find the values of f(2), f(8) and f(15) from the following table.

ſ	Х	4	5	7	10	11	13
	f(x)	48	100	294	900	1210	2028

2. (a) Establish Newton's backward interpolation formula for equal interval length.(b) Find the missing term in the following table.

X	16	18	20	22	24	26
f(x)	39	15		151	264	388

3. (a) Find the first and second derivatives of the function y = f(x) tabulated below at the point x = 7.50.

Х	7.47	7.48	7.49	7.50	7.51	7.52	7.53
y = f(x)	0.193	0.195	0.198	0.201	0.203	0.206	0.208
 			1.00	~ 1		0()	• 3 •

- (b) Define factorial notation in the Difference Calculus. Express $f(x) = 2x^3 3x^2 + 3x 10$ in the factorial notation the interval of differencing being unity.
- 4. (a) Construct general quadrature formula for equidistant values of x.
 - (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's one third rule and hence find the approximate

value of π .

- 5. (a) Solve $2u_{x+2} 5u_{x+1} + 2u_x = 0$ and find the particular solution when $u_0 = -1$, $u_1 = 1$.
 - (b) Solve $\frac{dy}{dx} = x + \left| \sqrt{y} \right|$ by Euler's modified method with inial condition y = 1 at x = 0 for all the range $0 \le x \le 0.6$ in the steps of 0.2.
- 6. Use Pieard's method of successive approximation for solving first order simultaneous equations.

$$\frac{dy}{dx} = x + z$$
 and $\frac{dz}{dx} = x - y^2$ satisfying $y = 2, z = 1$ at $x = 0$.

- 7. Solve $\frac{dy}{dx} = x + y$ with initial condition y(0) = 1 by Runge-Kutta method form x = 0 to x = 0.4, where $\lambda = 0.1$
- 8. (a) Explain Gauss elimination method and point out pivotal elements.
 - (b) Use Gauss-Seidel method to construct the solution of the following system.

27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110.

- 9. (a) Apply Gauss Elimination method to find the solution of the system 27x + 6y z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110.
 - (b) Describe the analytic method for finding the roots of an equation based on Rolle's Theorem.

Full Marks: 80/75

10. (a) Evaluate √12 by applying Newton-Raphson's formula to four places of decimals.
(b) Explain Graeffe's Root squaring method.

* * * * * * *